On a Non-stagnation Condition for Gmres and Application to Saddle Point Matrices

نویسنده

  • VALERIA SIMONCINI
چکیده

In Simoncini and Szyld [Numer. Math., 109 (2008), pp. 477–487] a new non-stagnation condition for the convergence of GMRES on indefinite problems was proposed. In this paper we derive an enhanced strategy leading to a more general non-stagnation condition. Moreover, we show that the analysis also provides a good setting to derive asymptotic convergence rate estimates for indefinite problems. The analysis is then explored in the context of saddle point matrices, when these are preconditioned in a way so as to lead to nonsymmetric and indefinite systems. Our results indicate that these matrices may represent an insightful training set towards the understanding of the interaction between indefiniteness and stagnation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized iterative methods for solving double saddle point problem

In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version  of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...

متن کامل

Optimization of the parameterized Uzawa preconditioners for saddle point matrices

The parameterized Uzawa preconditioners for saddle point problems are studied in this paper. The eigenvalues of the preconditioned matrix are located in (0, 2) by choosing the suitable parameters. Furthermore, we give two strategies to optimize the rate of convergence by finding the suitable values of parameters. Numerical computations show that the parameterized Uzawa preconditioners can lead ...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Unsteady Heat and Mass Transfer Near the Stagnation-point on a Vertical Permeable Surface: a Comprehensive Report of Dual Solutions

In this paper, the problem of unsteady mixed convection boundary layer flow of a viscous incompressible fluid near the stagnation-point on a vertical permeable plate with both cases of prescribed wall temperature and prescribed wall heat flux is investigated numerically. Here, both assisting and opposing buoyancy forces are considered and studied. The non-linear coupled partial differential equ...

متن کامل

New conditions for non-stagnation of minimal residual methods

In the solution of large linear systems, a condition guaranteeing that a minimal residual Krylov subspace method makes some progress, i.e., that it does not stagnate, is that the symmetric part of the coefficient matrix be positive definite. This condition results in a well-established worst-case bound for the convergence rate of the iterative method, due to Elman. This bound has been extensive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010